A DESCRIPTION AND COMPARISON OF SUBROUT INES
FOR COMPUTING EUCLIDEAN INNER PRODUCTS ON THE IBM 360

BY
MICHAEL A. MALCOLM

AD713842

STAN-CS-70-175
OCTOBER 1970

D DC
AP R=m AR
o s '.”

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

D | This docemont tcas beed ':'i'PPmV‘d
=* for public robocss and scie Lis
disigbutioz s unlinited.

p——

A DESCRIPTION AND COMPARISON OF SUBROUTINES

FOR COMPUTING EUCLIDEAN INNER PRODUCTS ON THE IBM 360 _ :

by
Michael A. Malcolm

Yo, CE——

P 2 PR Y .-

I. . introduction . '

In meny algorithms, a Euclidean inner product of two vectors must
be computed with greater precision than the rest of the calculations.

An example is the calculation of the residual vector 1

(1)

r =b-

r 5>

used in an algorithm for improving an approximate golution X of

the lines~ system
s=b .
When the inner product occurs in an algorithm c\oded in short
precision, it is usually sufficient to accumulate it in long precision

(double precision). Long-precision arithmetic is a hardware feature of [

many machines; if so, the inner product is easily coded and quickly

executed. However, when long-precision arithmetic is uot avaeilable, or

when the entire algorithm is coded in long precision, the inner product

routine becomes more difficult to code and execution time may become
excessive.

This report is primarily cocerned with existing routines for
evaluating inner products using more precision than long, for use within
long-precision progrems for the IBM System/360. . Several such subroutines
can be called from Fortran H programs; one is available for Watfor (or

Watfiv) Fortran programs and one for Algol W.

P

IT. Algol W

The double precision inner product routine available for Algol W

programs is the

long real procedure ip2 (integer i; integer value !, s, u;

long real a, b; long real value c);

cament This procedure computes the sum of products axb and
adds it to the extra term c. The bound variable i is used
to indicate the subscript in the components of the vectors
e and b over which the scalarproduct is formed. Although the
procedure body is more complicated, it can be illustrated as

follows:

begin long real sum, sum := 0.0L,
for i := 1 step s until u do sum := sum + a¥b,
sum + ¢

end;
Jense1's device is used through the bound variable i . For example,

ip2 could be used to compute the vector r in Equation (1) as follows:

for i := 1 step 1 until n do
r(i) := -ip2(k,l,l,n,A(i,k),x(k),-b(i))

Since each product has 28 significant hex digits and a double word has
only 14 digits, a technique related to that suggested by MySller [1965]
is used to retain full significance. For illustrative purposes, consider

the following segment of an Algol W program:

real t; long real a, al, a2, b, bl, b2, b3;

éomment a and b have been assigned double precision vaiues;
t :=a; al :=t; a2 := a-al;

t :=Dbj bl := t; b3 = b -Dbl;

t :=Db3; b2 :=1t; b3 := b3 -02;

The above program segment splits the numbers & &nd b so that

a8 = al+a2

b bl+b2+ b3 .

Thus

axb = (al+a2) x (bl+ b2+ Db3)
= al¥bl+ al*(b2 + b3) + a2¥bl + a2¥b2 + a2%b3 (2)

where * indicates double-precision floating-point multiplication and

the symbols x , + and = have the usual mathematical interpretation.

The terms of Equation (2) are accumulated using a technique

MR TR

suggested by Malcolm {1970]. It follows directly from Theorem 2 in

Malcolm [1970] that provided n < 13107 , the result '(E) calculated by

ip2 satisfies

T : £ =E(1+e) (3)
g where
» -12
l §’Z le| < k16
-
g{ and & is the exact result. The procedure can be easily modified to
*ZJ{: accammodate n > 13107 and still satisfy Equation (3).
. The parameters i, a and b are passed by name to give maximum
*
14 generality. One may wish to modify this to economize on execution time.
#
!
X
§
&
4

£

4

III. Watfor (or Watfiv) Fortran : |

The same techniques used in ip2 are implemented in two Fortran

subroutines: DFPUT(A,B) and IPTOTL(S) . The call:
CALL DPPUT(A,B) r

adds the product AxB (A and B are double precision) to the

accumulators. The call:
CALL IPTOTL(S)

sums the aceumulators and assigns the long precision result to S . The - {
subroutine IPTOTT leaves the accumulators in their initial state (all .
Z€ro) .

The result S (= £) satisfies (3) provided DPEUT has not been s

t called more than 13,107 times since the accumulators were iast initialized.

| DPRUT and IPTOTL use a named common area called DPACCC for storing l
the accumulators. A BLOCK DATA subprogram is used for initializing the] ' J
named common data area. ;

Following is an example using DPPUT and IPTOTL to calculate the

r vector in Equation (1).

D 10 I = 1,N
Dp 53 =1,N
5 CALL DPPUT(-A(I,J),X(J))
CALL DPRUT(B(I),1.0DO)
10 CALL IPTOTL(R(I))

IV. Fortran H

Several efficient subroutines can be called by a Fortran H program

for camputing double-plus inner products.

=

A T T N R N S TR B

T
N 2

A. VPR2

VPR2 is a subroutine written by Ehrman [1967) that forms the
double-long product of two double precision arguments and adds. it to a
double-long sum. For example, VPR2 could be used for camputing the r

vector of Equation (1) as follows:

REAL#8 R1(2),A(N),B(N),X(N),R(N)

INTEGER IEXP ,
D 10 I = 1,N

IEXP = O

R1(1) = 0.0DO

R1(2) = 0.0DO

Df5J =1,N

5 CALL VPR2(-A(I,J),X(J),R1(1),IEXP)
CALL VPR2(1.0D0,B(I),R1(1),IEXP)
IF (IEXP-NE.O) Gf T@ 100

10 R(I) = R1(1)

100 {write error message and/or terminate]}

Tn the above example, Rl is an accumulator with 30 hex digits (two dogble
words with the exponent) and IEXP is used as an indication of underflow or
overflow.

Although VPR2 uses a 30 hex digit accumulator, it can still result
in a large relstive error. Examples can be constructed that result in no
significant digits. However, practical algorithms in which this phenomenon
causes an unacceptable loss of precision are probably .fa.re.

All calculations in VPR2 are performed in the "general registers".
Although ‘FR2 requires & subroutine linkage for each term of the inner

product, execution times compare favorably with the fastest routines.

== Wy N N 1

B. DPRUT and IPTOTL

The routines Jescribed in Part III for use in Watfor are available

in more efficient versions coded in PL360 for use with Fortran H. The

PL360 versions of DPPUT and IPTOTL differ from the Fortran versions in
that full precision accuracy is obtained and the resﬁlt is correctly |
rounded. This is achieved by a technlique described in Section V of ' i
Malcolm [1970]. Also, the result has full precision accuracy and is]

correctly rounded.

C. DPDOTP

DFDOTP is & PL360 function subroutine which uses the same techniques
as DPRUT and IPTPTL described above. The function call for DPDOTP has &

variable length parameter list. The full formal parameter list is:

DPDOTP(A,B, N, XTERM, INCA, INCB, PVA, PVB) ‘

| where

A,B -~ The locations of the first components of the long-precision
vectors to be multiplied
i N -= The number of terms entering the inner product
XTERM -- An extra double precision term to be added to the inner
product (optional) | : ‘
INCA -- Number of (double) words separating succeasi\.re elements of :
the vector” A (optional) (' :
INCB ~-- Number of (double) words separatihg successive elements of

the vector B (optional)

PVA == Integer vector specifying a permutation of the elements

- of the vector A (optional)

PVB -- Integer vector specifying a permutation of the elements

of the vector B (optional)

In the actual parameter list, only the first three pa;ra.meters (A, B

and N) are required. Default values of the remaining pareameters are:

0.0D0)

XTERM =

INA =1

meB =1 | ‘
PA(I) =I (I =1,2,...) ']
PVB(I) = I (I =1,2,...)

For illustrative purposes assume the following declarations

REAL*8 DPDOTP,A(N,N),B(N),C(N),SUM,R(N),X(N)
INTEGER*4 PA(N)

Note that DPDOTP must be declared as a long-precision floating-point ‘ﬂ
variable. A statement which sets SUM to the inner product of the vectors

B and C 1is

SUM = DPFLOTP(B, C,N)

Another example is the calculation of the residual vector in Equation (1):

Df 10T = 1,N
10 R{I) = -DFDPTP(A,X,N,-B(I),N)

In this example, INCA must be N because Fortran stores the array A
in column order (see the Fortran IV(H) Programmer's Guide) which means
neighboring elements in & given row of A are separated by N double

words. If the columns of A , in the above example, were permuted as

-
-
*

specified by the integer vector PA , the calculation of the residual

vector would then be as follows:

D 10 I = L,N
10 R(I) = -DPDPTP(A,X,N,-B(I),N,1,PA)

A PL360 single precision function subroutine for calculating the exact
rounded inner product of single precision vectors is also available. This

routine, called SFDOTP, has the same calling sequence &s DPDOTP.

D. DOTP

DOTP is an Assembler Language function subroutine written at
Argonne National Laboratories (see Jordan [1967]). fThe formal parameter
list is

DOTP(A, B,N)
where
Ay,B == The locations of the first components of the vectors to
be multiplied

N ~-- The number of terms entering the inner product

For example, the residual vector in Equation (1) could be calculated as

follows:

REAL*8 D@TP,A(N,N),X(N),B(N),R(N), TEMP(N)

Dp 101 = L,N -
Dd 535 =1,N
5 TEMP(J) = A(I,J)
10 R(I) = B(I) - DTP(TEMP,X,N)

Note that DOTP must be declared as a lorg-precision variable.

T i sttt o o

A e e s

DOTP uses the same techniques as DPDOTP (i.e., splitting the
operands and 32 accumulators); however, DOTP does & mumber of internal
subroutine linkages (proportional to N) to code that is in line in

DPDOTP.

V. Comparison of Execution Times

Each of the routines descri»ed abrve has undergone extensive
tests to insure accuracy. In addition to these tests, each routine
was timed on the 360/67 with the following two calculations:

N
Test No. 1: Z a,,. xb
k=1 ik k

N
Test No. 2: kz=:l 8y X by

Each factor & 2 & bk entering the inner product for these tests
was equal to 3.1415926535897932 .
The experimental results are tabulated in Table I in terms of values

of K for determining execution time according to
execution time = K x N

in milliseconds.
The people who programmed the various routines are acknowledged

in Table I.

TABLE I

Values of K for

*
execution time = K% no. of terms in inner product (ms) J

Inner Inner K K

Calling Product Product for for

Lenguage | Routine Compiler Programmer §a 1k X bk gak X bk

Algol W | 'ip2 Algol W Michael 0.710 0.703

(w/o $NOCHECK) Saunders
Algol W ip2 Algol W Michael 0.5kk 0.526
(with $NOCHECK) Saunders

Fortran DPRUT Watfiv Gordon 2.12 2.03
IPTOTL | (w/o NOTHECK) Gullahorn

Fortran DPRUT Watfiv Gordon 2.11 2.06
TIPTOTL (with NOCHECK) Gullehorn

Fortran DPFUT Fortran H Gordon 0.424 0.421
IPTOTL opt =0 Gullahorn

Fortran DPRUT Fortran H Gordon 0.332 0.332
IPTOTL opt =2 Gullshorn

Fortran | DPPUT PL360 Michael 0.212 0.210
IPIOTL Malcolm

Fortran | DPDOTP | PL360 Michael 0.184 0.184

Melcolm
Fortran | VPR 0S/Assembler John Ehrmen| 0.196 0.196
Fortran | DOTP 0S/Assembler D. Jordan 0.2k2 0.218

Y A1l tests were performed on an IBM 360/67.

10

VI. Conclusions

Many long-precision routines requiring accurate inner products
can be coded in either Fortran or Algol W. For Fortran, DPPUT and IPTOTL
are probably the most useful for three reasons: (1) they are easy to use
end fast; (2) accuracy of the result is gua.ra.nteed;. and (3) prog’rams. '
using them can be debugged and run with the Watfor (or Watfiv) compiler.
For programs which are to be debugged and run with the Fortran H compiler,

DPDOTP is probably the best because it is easy to use, execution time is
minimal anci the result is guaranteed.

m* ‘s,q._g" a® Gl

Fortran IV(H) Programmer's Guide. IBM System/360 Operating System.

Bibliography

Ehrman, John [1967]. "Double-Double Accumulation of Inner Products."

Stanford University Computation Center, Extrinsic Program Library No. C 003.

F{le No. 8360-25, Form C28-6602-3.
Jordan, D. F. [1967]. ANL-F1545-DOTP, "Extra-Precision Accumulatiag
Inner Product."” Argonne National Laboratory, Applied Mathematics

Division. System/360 Library Subroutine. Argonne, Illinois.

November.

Malcolm, Michael [1970]. "An Algorithm for Floating-Point Accumulation of
Sums with Small Relative Error." Technical Report No. STAN-CS-70-163.
Computer Sclence Department, Stanford University. June.

Mpller, Ole [1965]. "Quasi Double-Precision in Floating-Point Addition."
BIT 5. >7-50.

Unclassified

Security Classificati
DOCUMENT CONTROL DATA -R&D

(Security clasuilication of title, body of abstract and indexing anneiation muni be entered when the overall report I8 classilied)

1. ORIGINATING ACTIVITY (Corporate author) 20, REPORT SECURITY CLASSIFICATION

Unclassified

2. GROUP

Stanford University

e T
3 REPORT TITLE

A DESCRIPTION AND COMPARISON OF SUBROUTINES FOR COMPUTING EUCLIDEAN INNER
PRODUCTS ON THE IBM 360

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

8. AUTHOR(S) (Firat name, middie Initlal, last name)

Michael A. Malcolm

¢. REPOAT DATE 7. TOTAL NO. OF PAGES 76, NO. OF REFS
October 1970 12 5
8a. CONTRACT OR GAANT NO. N 98. ORIGINATOR'S REPORT NUMBER(S)
ONR O4l4-211 NSF GJ 4LO8
b. PROJECT NO. 1
e. 0. OTHER REPORT NO(S) (Any other numbers that may be sssigned
this report)
d. None

10. CISTRIBUTION STATEMENT

Distribution of this document is unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVI®Y
Office of Naval Research, Pasadena Branch
Office
ational Science Foundation, Comp. Sci. Div.

13. ABSTRACT

q .

Several existing subroutines and an Algol W procedure for computing inner
products on the IBM 360, using more precision than long, are described and
evaluated. Error bounds (when they exist) and execution timing tests are included.

DD "..1473 (PAcE 1)
o o ' E'-‘“:i!v ﬁnllmcauon

-

Unclassified
= Tecurlty Classilication

14.

KEY WORDS

LINK A

LINK B

LINK €

nROLE

wT ROLE

LAS

ROLE

wT

Inner Product
Euclidean Inuner Product
Multiple-Precision Arithmetic

DD l'xOlI473 (BACK)

(PAGE 2)

Unclagsified

Security Classification

